Tissue-Specific Differences in DNA Modifications (5-Hydroxymethylcytosine, 5-Formylcytosine, 5-Carboxylcytosine and 5-Hydroxymethyluracil) and Their Interrelationships

نویسندگان

  • Daniel Gackowski
  • Ewelina Zarakowska
  • Marta Starczak
  • Martyna Modrzejewska
  • Ryszard Olinski
  • Wendy Dean
چکیده

BACKGROUND Replication-independent active/enzymatic demethylation may be an important process in the functioning of somatic cells. The most plausible mechanisms of active 5-methylcytosine demethylation, leading to activation of previously silenced genes, involve ten-eleven translocation (TET) proteins that participate in oxidation of 5-methylcytosine to 5-hydroxymethylcytosine which can be further oxidized to 5-formylcytosine and 5-carboxylcytosine. Recently, 5-hydroxymethylcytosine was demonstrated to be a relatively stable modification, and the previously observed substantial differences in the level of this modification in various murine tissues were shown to depend mostly on cell proliferation rate. Some experimental evidence supports the hypothesis that 5-hydroxymethyluracil may be also generated by TET enzymes and has epigenetic functions. RESULTS Using an isotope-dilution automated online two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry, we have analyzed, for the first time, all the products of active DNA demethylation pathway: 5-methyl-2'-deoxycytidine, 5-hydroxymethyl-2'-deoxycytidine, 5-formyl-2'-deoxycytidine and 5-carboxyl-2'-deoxycytidine, as well as 5-hydroxymethyl-2'-deoxyuridine, in DNA isolated from various rat and porcine tissues. A strong significant inverse linear correlation was found between the proliferation rate of cells and the global level of 5-hydroxymethyl-2'-deoxycytidine in both porcine (R2 = 0.88) and rat tissues (R2 = 0.83); no such relationship was observed for 5-formyl-2'-deoxycytidine and 5-carboxyl-2'-deoxycytidine. Moreover, a substrate-product correlation was demonstrated for the two consecutive steps of iterative oxidation pathway: between 5-hydroxymethyl-2'-deoxycytidine and its product 5-formyl-2'-deoxycytidine, as well as between 5-formyl-2'-deoxycytidine and 5-carboxyl-2'-deoxycytidine (R2 = 0.60 and R2 = 0.71, respectively). CONCLUSIONS Good correlations within the substrate-product sets of iterative oxidation pathway may suggest that a part of 5-formyl-2'-deoxycytidine and/or 5-carboxyl-2'-deoxycytidine can be directly linked to a small portion of 5-hydroxymethyl-2'-deoxycytidine which defines the active demethylation process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation.

We investigated systematically the effects of Tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation in synthetic duplex DNA. We found that the replacement of 5-methylcytosine at a CpG site with a 5-hydroxymethylcytosine, 5-formylcytosine, 5-carboxylcytosine or 5-hydroxymethyluracil resulted in altered methylation of cytosine at both the opposite a...

متن کامل

Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation

The mammalian thymine DNA glycosylase (TDG) is implicated in active DNA demethylation via the base excision repair pathway. TDG excises the mismatched base from G:X mismatches, where X is uracil, thymine or 5-hydroxymethyluracil (5hmU). These are, respectively, the deamination products of cytosine, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). In addition, TDG excises the Tet prote...

متن کامل

Tissue Distribution of 5-Hydroxymethylcytosine and Search for Active Demethylation Intermediates

5-Hydroxymethylcytosine (hmC) was recently detected as the sixth base in mammalian tissue at so far controversial levels. The function of the modified base is currently unknown, but it is certain that the base is generated from 5-methylcytosine (mC). This fuels the hypothesis that it represents an intermediate of an active demethylation process, which could involve further oxidation of the hydr...

متن کامل

A Lexicon of DNA Modifications: Their Roles in Embryo Development and the Germline

5-methylcytosine (5mC) on CpG dinucleotides has been viewed as the major epigenetic modification in eukaryotes for a long time. Apart from 5mC, additional DNA modifications have been discovered in eukaryotic genomes. Many of these modifications are thought to be solely associated with DNA damage. However, growing evidence indicates that some base modifications, namely 5-hydroxymethylcytosine (5...

متن کامل

Structural and mutation studies of two DNA demethylation related glycosylases: MBD4 and TDG

Two mammalian DNA glycosylases, methyl-CpG binding domain protein 4 (MBD4) and thymine DNA glycosylase (TDG), are involved in active DNA demethylation via the base excision repair pathway. Both MBD4 and TDG excise the mismatch base from G:X, where X is uracil, thymine, and 5-hydroxymethyluracil (5hmU). In addition, TDG excises 5mC oxidized bases i.e. when X is 5-formylcytosine (5fC), and 5-carb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015